Characterization of an integral protein of the brush border membrane mediating the transport of divalent metal ions.

نویسندگان

  • M Knöpfel
  • G Schulthess
  • F Funk
  • H Hauser
چکیده

The transport of Fe(2+) and other divalent transition metal ions across the intestinal brush border membrane (BBM) was investigated using brush border membrane vesicles (BBMVs) as a model. This transport is an energy-independent, protein-mediated process. The divalent metal ion transporter of the BBM is a spanning protein, very likely a protein channel, that senses the phase transition of the BBM, as indicated by a break in the Arrhenius plot. The transporter has a broad substrate range that includes Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). Under physiological conditions the transport of divalent metal ions is proton-coupled, leading to the acidification of the internal cavity of BBMVs. The divalent metal ion transporter can be solubilized in excess detergent (30 mM diheptanoylphosphatidylcholine or 1% Triton X-100) and reconstituted into an artificial membrane system by detergent removal. The reconstituted membrane system showed metal ion transport characteristics similar to those of the original BBMVs. The properties of the protein described here closely resemble those of the proton-coupled divalent cation transporter (DCT1, Nramp2) described by, Nature. 388:482-488). We may conclude that a protein of the Nramp family is present in the BBM, facilitating the transport of Fe(2+) and other divalent transition metal ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATP-driven copper transport across the intestinal brush border membrane.

The divalent metal ion transporter DMT1 is localized in the brush border membrane (BBM) of the upper small intestine and has been shown to be able to transport Mn2+, Fe2+, Co2+, Ni2+, and Cu2+. Belgrade rats have a glycine-to-arginine (G185R) mutation in DMT1, which affects its function. We investigated copper transport with BBM vesicles of Belgrade rats loaded with calcein, which exhibits fluo...

متن کامل

The intestinal transport of zinc studied using brush-border-membrane vesicles from the piglet.

Brush-border-membrane vesicles were prepared from piglet small intestines and the uptake of 65Zn was studied using a rapid filtration assay. The mechanism of 65Zn uptake was complex and two processes were identified. In the first process, 65Zn uptake was rapid, reached equilibrium in 5-15 min and had an optimum pH of 7.5. The uptake was saturable and involved both binding to, and transport acro...

متن کامل

Characterization of Lithium Ion Transport Via Dialysis Process

Dialysis is a membrane based separation process in which the concentration gradient across the membrane is the driving force resulting in a flow of material from one side <span style="font-size: 10pt; ...

متن کامل

Simultaneous isolation and characterization of brush border and basolateral membrane vesicles from bovine small intestine.

Purified brush border and basolateral membranes were isolated from homogenized intestinal enterocytes of Holstein steers by divalent cation precipitation followed by differential and sucrose density gradient centrifugation. Alkaline phosphatase and Na/K adenosine triphosphatase served as marker enzymes for the brush border and basolateral membranes, respectively. The brush border and basolatera...

متن کامل

Ca2+ transport processes of lobster hepatopancreatic brush-border membrane vesicles

45Ca2+ uptake by hepatopancreatic brush-border membrane vesicles of Atlantic lobster (Homarus americanus) occurred by a combination of three independent processes: (1) an amiloride-sensitive carrier-mediated transport system; (2) an amiloride-insensitive carrier-mediated transport system; and (3) a verapamil-inhibited channel process responsive to transmembrane potential. Both carrier-mediated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 79 2  شماره 

صفحات  -

تاریخ انتشار 2000